Elastic Core Libraries
BaseSplitCodeFactory
Inherited by the Factory contract. Main purpose is to hold the Kyberswap Elastic Pool creation code in a separate address, since its creation code is close to the bytecode size limit of 24kB.
Taken from Balancer Labs's solidity utils repo. The only modification made is the unchecked keyword for sol 0.8 compatibility.
getCreationCodeContracts()
getCreationCodeContracts()
Returns the 2 addresses where the creation code of the contract created by this factory is stored.
getCreationCode()
getCreationCode()
Returns the creation code of the contract this factory creates.
CodeDeployer
Taken from Balancer Labs's solidity utils repo. Imported and used by the BaseSplitCodeFactory
contract to handle deployment.
FullMath
Taken from Mathemagic finale: muldiv - Remco Bloeman. Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision. Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits.
mulDivFloor()
mulDivFloor()
Returns (a * b / denominator)
rounded down.
a
uint256
multiplicand
b
uint256
multiplier
denominator
uint256
divisor
mulDivCeiling()
mulDivCeiling()
Similar to mulDivFloor
, but rounded up.
LinkedList
A doubly linked list to be used for tick management.
Struct: Data
previous
int24
previous tick
next
int24
next tick
init()
init()
Initializes the LinkedList with the lowestValue and highestValue, where
lowestValue.previous = lowestValue
lowestValue.next
=highestValue
highestValue.previous = lowestValue
highestValue.next = highestValue
self
mapping(int24 => Data)
A mapping of int24
values to the Data
struct
lowestValue
int24
lowest value
highestValue
int24
highest value
insert()
insert()
Inserts a new value into the LinkedList, given an existing lower value. The new value to be inserted should not be an existing value. Also, the condition lowerValue < newValue < lowerValue.next
should be satisfied.
self
mapping(int24 => Data)
A mapping of int24
values to the Data
struct
newValue
int24
value to be inserted
lowerValue
int24
highest existing value in the linked list that is < newValue
remove()
remove()
Removes an existing value from the LinkedList. Returns the next lowest value (existingValue.previous
).
Note that no removal is performed if removedValue
happens to be the lowestValue
or highestValue
passed in init()
.
self
mapping(int24 => Data)
A mapping of int24
values to the Data
struct
removedValue
int24
value to be removed
LiqDeltaMath
Contains a function to assist with the addition of signed liquidityDelta to unsigned liquidity.
applyLiquidityDelta()
applyLiquidityDelta()
Adds or remove uint128
liquidityDelta to uint128
liquidity
liquidity
uint128
Liquidity to be adjusted
liquidityDelta
int128
quantity change to be applied
isAddLiquidity
bool
true = add liquidity, false = remove liquidity
MathConstants
Contains constants commonly used by multiple files.
QtyDeltaMath
Contains functions for calculating token0 and token1 quantites from differences in prices or from burning reinvestment tokens
getQtysForInitialLockup()
getQtysForInitialLockup()
Calculate the token0 and token1 quantities needed for unlocking the pool given an initial price and liquidity.
Input
initialSqrtP
uint160
initial sqrt price raised by 2**96
liquidity
uint128
initial liquidity. should be MIN_LIQUIDITY = 100000
Output
qty0
uint256
token0 quantity required
qty1
uint256
token1 quantity required
calcRequiredQty0()
calcRequiredQty0()
Calculates the token0 quantity between 2 sqrt prices for a given liquidity quantity.
Note that the function assumes that upperSqrtP > lowerSqrtP
.
Input
lowerSqrtP
uint160
the lower sqrt price
upperSqrtP
uint128
the upper sqrt price
liquidity
int128
liquidity quantity
isAddLiquidity
bool
true = add liquidity, false = remove liquidity
Output
int256
token0 qty required for position with liquidity between the 2 sqrt prices
Generally, if the return value > 0, it will be transferred into the pool. Conversely, if the return value < 0, it will be transferred out of the pool.
calcRequiredQty1()
calcRequiredQty1()
Calculates the token1 quantity between 2 sqrt prices for a given liquidity quantity.
Note that the function assumes that upperSqrtP > lowerSqrtP
.
Input
lowerSqrtP
uint160
the lower sqrt price
upperSqrtP
uint128
the upper sqrt price
liquidity
int128
liquidity quantity
isAddLiquidity
bool
true = add liquidity, false = remove liquidity
Output
int256
token0 qty required for position with liquidity between the 2 sqrt prices
Generally, if the return value > 0, it will be transferred into the pool. Conversely, if the return value < 0, it will be transferred out of the pool.
getQty0FromBurnRTokens()
getQty0FromBurnRTokens()
Calculates the token0 quantity to be sent to the user for a given amount of reinvestment tokens to be burnt.
sqrtP
uint160
the current sqrt price
liquidity
uint128
expected change in reinvestment liquidity due to the burning of reinvestment tokens
getQty1FromBurnRTokens()
getQty1FromBurnRTokens()
Calculates the token1 quantity to be sent to the user for a given amount of reinvestment tokens to be burnt.
sqrtP
uint160
the current sqrt price
liquidity
uint128
expected change in reinvestment liquidity due to the burning of reinvestment tokens
divCeiling()
divCeiling()
Returns ceil(x / y)
. y
should not be zero.
QuadMath
getSmallerRootOfQuadEqn()
getSmallerRootOfQuadEqn()
Given a variant of the quadratic equation where , and , calculate the smaller root via the quadratic formula.
Returns
a
uint256
b
uint256
c
uint256
sqrt()
sqrt()
Unchanged from DMMv1. Calculates the square root of a value using the Babylonian method.
ReinvestmentMath
Contains a helper function to calculate reinvestment tokens to be minted given an increase in reinvestment liquidity.
calcRMintQty()
calcRMintQty()
Given the difference between reinvestL
and reinvestLLast
, calculate how many reinvestment tokens are to be minted.
reinvestL
uint256
latest reinvestment liquidity value. Should be >= reinvestLLast
reinvestLLast
uint256
reinvestmentLiquidityLast value
baseL
uint256
active base liquidity
rTotalSupply
uint256
total supply of reinvestment token
SafeCast
Contains methods for safely casting between different types.
toUint32()
toUint32()
Casts a uint256
to a uint32
. Reverts on overflow.
toInt128()
toInt128()
Casts a uint128
to a int128
. Reverts on overflow.
toUint128()
toUint128()
Casts a uint256
to a uint128
. Reverts on overflow.
revToUint128()
revToUint128()
Given int128 y
, returns uint128 z = -y
.
toUint160()
toUint160()
Casts a uint256
to a uint160
. Reverts on overflow.
toInt256()
toInt256()
Casts a uint256
to a int256
. Reverts on overflow.
revToInt256()
revToInt256()
Cast a uint256
to a int256
and reverses the sign. Reverts on overflow.
revToUint256()
revToUint256()
Given int256 y
, returns uint256 z = -y
.
SwapMath
Contains the logic needed for computing swap input / output amounts and fees. The primary function to look at is computeSwapStep
, as it is where the bulk of the swap flow logic is in, and where calls to the other functions in the library are made.
computeSwapStep()
computeSwapStep()
Computes the actual swap input / output amounts to be deducted or added, the swap fee to be collected and the resulting price.
Inputs
liquidity
uint256
active base liquidity + reinvestment liquidity
currentSqrtP
uint160
current sqrt price
targetSqrtP
uint160
sqrt price limit nextSqrtP
can take
feeInBps
uint256
swap fee in basis points
specifiedAmount
int256
amount remaining to be used for the swap
isExactInput
bool
true if specifiedAmount
refers to input amount, false if specifiedAmount
refers to output amount
isToken0
bool
true if specifiedAmount
is in token0, false if specifiedAmount
is in token1
Outputs
usedAmount
int256
actual amount to be used for the swap. >= 0 if isExactInput
= true, <= 0 if isExactInput
= false
returnedAmount
int256
output qty (<= 0) to be accumulated if isExactInput
= true, input qty (>= 0) if isExactInput
= false
deltaL
uint256
collected swap fee, to be incremented to reinvest liquidity
nextSqrtP
uint160
new sqrt price after the computed swap step
Note
nextSqrtP
should not exceed targetSqrtP
.
calcReachAmount()
calcReachAmount()
Calculates the amount needed to reach targetSqrtP
from currentSqrtP
. Note that currentSqrtP
and targetSqrtP
are casted from uint160 to uint256 as they are multiplied by TWO_BPS (20_000)
or feeInBps
.
The mathematical formulas are provided below for reference.
true
true
(>0)
true
false
(>0)
false
true
(<0)
false
false
(<0)
Note that while cases 1 and 3 and cases 2 and 4 are mathematically equivalent, the implementation differs by performing a double negation for the exact output cases. It takes the difference of and in the numerator (>0), then performing a second negation.
liquidity
uint256
active base liquidity + reinvestment liquidity
currentSqrtP
uint160
current sqrt price
targetSqrtP
uint160
sqrt price limit nextSqrtP
can take
feeInBps
uint256
swap fee in basis points
isExactInput
bool
N.A.
true / false if specified swap amount refers to input / output amount respectively
isToken0
bool
N.A.
true / false if specified swap amount is in token0 / token1 respectively
estimateIncrementalLiquidity()
estimateIncrementalLiquidity()
Estimates deltaL
, the swap fee to be collected based on amountSpecified. This is called only for the final swap step, where the next (temporary) tick will not be crossed.
In the case where exact input is specified, the formula is rather straightforward.
true
false
In the case where exact output is specified, a quadratic equation has to be solved. The desired result is the smaller root of the quadratic equation.
true
false
absDelta
uint256
usedAmount
, absolute value of usedAmount
(actual amount used for swap)
liquidity
uint256
active base liquidity + reinvestment liquidity
currentSqrtP
uint160
current sqrt price
feeInBps
uint256
swap fee in basis points
isExactInput
bool
N.A.
true / false if specified swap amount refers to input / output amount respectively
isToken0
bool
N.A.
true / false if specified swap amount is in token0 / token1 respectively
calcIncrementalLiquidity()
calcIncrementalLiquidity()
Calculates deltaL
, the swap fee to be collected based on amountSpecified. This is called for an intermediate swap step, where the next (temporary) tick will be crossed.
The mathematical formulas are provided below for reference.
true
true
true
false
false
true
false
false
Inputs
absDelta
uint256
||
usedAmount
, absolute value of usedAmount
(actual amount used for swap)
liquidity
uint256
active base liquidity + reinvestment liquidity
currentSqrtP
uint160
current sqrt price
nextSqrtP
uint160
next sqrt price
isExactInput
bool
N.A.
true / false if specified swap amount refers to input / output amount respectively
isToken0
bool
N.A.
true / false if specified swap amount is in token0 / token1 respectively
calcFinalPrice()
calcFinalPrice()
Calculates the sqrt price of the final swap step where the next (temporary) tick will not be crossed.
The mathematical formulas are provided below for reference.
true
true
true
false
false
true
false
false
Input
absDelta
uint256
||
usedAmount
, absolute value of usedAmount
(actual amount used for swap)
liquidity
uint256
active base liquidity + reinvestment liquidity
deltaL
uint256
collected swap fee
currentSqrtP
uint160
current sqrt price
isExactInput
bool
N.A.
true / false if specified swap amount refers to input / output amount respectively
isToken0
bool
N.A.
true / false if specified swap amount is in token0 / token1 respectively
calcReturnedAmount()
calcReturnedAmount()
Calculates returnedAmount
for the computeSwapStep
function. Rounds down when isExactInput = true
(calculating output < 0) so that we avoid sending too much. Conversely, rounds up when isExactInput = false
to ensure sufficient input > 0 will be received.
The mathematical formulas are provided below for reference.
isToken0 = true
The formula is actually the same, with the difference being made to the operands to ensure the price difference is non-negative.
true
false
isToken0 = false
liquidity
uint256
active base liquidity + reinvestment liquidity
currentSqrtP
uint160
current sqrt price
nextSqrtP
uint160
next sqrt price
deltaL
uint256
collected swap fee
isExactInput
bool
N.A.
true / false if specified swap amount refers to input / output amount respectively
isToken0
bool
N.A.
true / false if specified swap amount is in token0 / token1 respectively
TickMath
Contains functions for computing square root prices from ticks and vice versa. Adapted from Uniswap V3's TickMath library.
Constants
MIN_TICK
int24
-887272
Minimum possible tick =
MAX_TICK
int24
887272
Minimum possible tick =
MIN_SQRT_RATIO
uint160
4295128739
getSqrtRatioAtTick(MIN_TICK)
MAX_SQRT_RATIO
uint160
1461446703485210103287273052203988822378723970342
getSqrtRatioAtTick(MAX_TICK)
getSqrtRatioAtTick()
getSqrtRatioAtTick()
Given a int24 tick
, calculates .
getTickAtSqrtRatio()
getTickAtSqrtRatio()
Given a square root price ratio uint160 sqrtP
, calculates the greatest tick
such that getSqrtRatioAtTick(tick) <= sqrtP
.
Note that MIN_SQRT_RATIO <= sqrtP <= MAX_SQRT_RATIO
, otherwise the function will revert.
getMaxNumberTicks()
getMaxNumberTicks()
Used to calculate the maximum liquidity allowable per tick. This function calculates the maximum number of ticks that can be inserted into the LinkedList, given a tickDistance
.
_tickDistance
int24
Ticks can only be initialized at multiples of this value.
Last updated